Polyspace® Model Link Products
User’s Guide

R2011b

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Polyspace® Model Link Products User’s Guide
© COPYRIGHT 1999-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

Revised for Version 5.3 (Release 2009a)
Revised for Version 5.4 (Release 2009b)
Revised for Version 5.5 (Release 2010a)
Revised for Version 5.6 (Release 2010b)
Revised for Version 5.7 (Release 2011a)
Revised for Version 5.8 (Release 2011b)

Getting Started with Model Link Products

Product Overviewcciiiiiiiiuennnnn.. 1-2
Polyspace Model Link SL 1-2
Polyspace Model Link TL. 1-2

BasicWorkflow i 1-3

Tutorial: Verifying Code from a Simple Model 1-5
Create Simulink Model and Generate Code 1-5
Run Polyspace Verification 1-12
View Results in Polyspace Verification Environment 1-13
Trace Error to Simulink Model 1-16
Specify Signal Ranges 1-17
Verify Updated Model ciiueiion... 1-19

Configure Model for Code Verification

2

Overview of Model Configuration for Code Generation

and Verification 2-2
Configuring Simulink Model for Code Verification ... 2-3
Recommended Model Settings for Code Verification .. 2-5
Checking Simulink Model Settings 2-7
Specifying Signal Ranges 2-9

Specifying Signal Range through Source Block

Parameters e 2-9

vi

Contents

Specifying Signal Range through Base Workspace 2-11

Annotating Blocks to Justify Known Checks or
Coding-Rules Violations 2-14

Configure Code Verification Options

3

Overview of Polyspace Configuration 3-2
Including Handwritten Code in Verification 3-3
Configuring Data Range Settings 3-5
Configuring Polyspace Analysis Options 3-7
Configuring Polyspace Project Properties 3-9
Creating a Polyspace Configuration File Template ... 3-10
Specifying Header Files for Target Compiler 3-13
Specifying Locationof Results 3-14
Main Generation for Model Verification 3-15
Polyspace Model Link SL Considerations 3-17
L0 =) T 1= 3-17
Subsystems e 3-17
Default Optionscciiiiiii i, 3-17
Data Range Specification 3-18
Recommended Polyspace Analysis Options for Generated
Code . e e 3-18
Polyspace Model Link TL Considerations 3-25

OV eI VIEW ot ettt et et e e e e e e 3-25

Subsystems e 3-25
Default Optionscciiiiiin . 3-25
Data Range Specification 3-26
Lookup Tables i, 3-26
Code Generation Optionscuiiiiinnneeennnn. 3-27

Run Code Verification

q

Running Verification with Polyspace Model Link SL
Software e 4-2

Running Verification with Polyspace Model Link TL

Software i e 4-4
Monitoring Verification Progress 4-7
Client Verificationstiiiinneneeenenn. 4-7
Server Verificationsc.c.uiiiiiineeneeennnn. 4-7
MATLAB Functions For Polyspace Batch Runs 4-8
Archive Files for Polyspace Verification 4-9
Template File in MATLAB Installation
folder\polyspace\ciiiiiiiiiiiiinnn 4-9
Files Used in Model Folder 4-9
Auto-Generated Files in Model Folder 4-10

Review Verification Results

5

Viewing Results in Polyspace Verification
Environment i i 5-2

Identifying Errors in Simulink Models 5-6

vii

Contents

o
ol

Getting Started with Model
Link Products

® “Product Overview” on page 1-2
e “Basic Workflow” on page 1-3
e “Tutorial: Verifying Code from a Simple Model” on page 1-5

1 Getting Started with Model Link Products

1-2

Product Overview

In this section...

“Polyspace Model Link SL” on page 1-2
“Polyspace Model Link TL” on page 1-2

Polyspace Model Link SL

Polyspace® Model Link™ SL extends Polyspace® Client™ for C/C++ and
Polyspace® Server™ for C/C++ with tools that let you trace Polyspace results
from generated C code directly to your Simulink® model. As a result, you can
identify which parts of the model are reliable, and correct design problems
that will cause run-time errors in the code. With Polyspace Model Link

SL, you work in the Simulink environment to verify C code generated

by Embedded Coder™ software. You can verify a mix of generated and
hand-written code before it is compiled.

Polyspace Model Link TL

Polyspace Model Link TL extends Polyspace Client for C/C++ and Polyspace
Server for C/C++ with tools that let you verify C code generated by
TargetLink® and trace Polyspace results from the generated C code to your
model. As a result, you can identify which parts of the model are reliable, and
correct design problems that will cause run-time errors in the code. With
Polyspace Model Link TL software, you work in the Simulink environment to
verify C code generated by TargetLink. You can verify a mix of generated and
hand-written code before it is compiled.

Basic Workflow

Basic Workflow

With Embedded Coder or dSPACE® TargetLink software, you can generate
C code from models in the Simulink Model-Based Design environment.
Using Polyspace Model Link SL and Polyspace Model Link TL software, you
can apply Polyspace verification to the generated code within the Simulink
environment. The software detects run-time errors in the generated code and
helps you to locate and fix model faults.

Note The documentation describes steps for the Polyspace Model Link SL
product, but states differences between the Polyspace Model Link SL and
Polyspace Model Link TL products where appropriate.

The workflow for using Polyspace Model Link software is:

1 Configure your Simulink model and generate code. See “Overview of Model
Configuration for Code Generation and Verification” on page 2-2.

2 Configure Polyspace verification options. See “Overview of Polyspace
Configuration” on page 3-2

Note After generating code, you can run a verification without manual
configuration. By default, Polyspace automatically creates a project and
extracts required information from your model. However, you can also
customize your verification. See “Configuring Polyspace Analysis Options”
on page 3-7.

3 Run Polyspace verification. See:

¢ “Running Verification with Polyspace Model Link SL Software” on page
4-2

¢ “Running Verification with Polyspace Model Link TL Software” on page
4-4

1 Getting Started with Model Link Products

4 View results, analyze errors, locate and fix model faults. See “Viewing
Results in Polyspace Verification Environment” on page 5-2.

The software allows direct navigation from a run-time error in the
generated code to the corresponding Simulink block or Stateflow® chart in
the Simulink model. See “Identifying Errors in Simulink Models” on page
5-6.

1-4

Tutorial: Verifying Code from a Simple Model

Tutorial: Verifying Code from a Simple Model

In this section...

“Create Simulink Model and Generate Code” on page 1-5

“Run Polyspace Verification” on page 1-12

“View Results in Polyspace Verification Environment” on page 1-13
“Trace Error to Simulink Model” on page 1-16

“Specify Signal Ranges” on page 1-17

“Identifying Errors in Simulink Models” on page 5-6
“Specify Signal Ranges” on page 1-17

“Verify Updated Model” on page 1-19

Create Simulink Model and Generate Code
To create a simple Simulink model and generate code:

1 Open MATLAB®, then start Simulink software.

2 Construct the following model.

1-5

1 Getting Started with Model Link Products

W my.first_code * E=3EER ==
Eile Edit Miew Sirmulation Format Tools Help
O=E2ES L] 3 |'|U.U |Normal j
In1
' x
-2 Out1
InZ
Product
Ready 100%: odeds

3 Select File > Save, then name the model my_first_code.
4 Select View > Model Explorer.

The Model Explorer opens.

1-6

Tutorial: Verifying Code from a Simple Model

(2} Madel Explarer [& =)
Eile Edit Wiew TJools Add Help
< dBBXEHEWRHZ OO 4B FOR2A
Search: by Hame - Name: Ef search
Moded Hierarchy W s | contents oy _first_code | Code Generation
4 [H] simulink Root rmm e | S O General | Report | Comments | Symbols | Custem Code | Debug | Interface -
Basewworkspace _
! Target selection
- E my_first_code Mame BlockType
B Model workspace & sower System targst file: grt.Hc Browse. ..
Code for my_first_code
& X - @ Data Inpor/Export Language: c v‘
% dvice for my_first_code
X . & Optimization £
j Simulink Design Werifier Build process
iy Configuration jactive) # Disgnostics
Harduware Implementation Compiler optimization level: Optimizations off (Faster builds)
£ il level FF (f: build
& Model Referencing TLC aptinns:
& Simulation Target
2 Walefile canfiguration
Code Generation
@ HDL Code Generation L e GO
Make command: make_rtw
Template maksfils: grt_default_tmf
« . 8
9 Revert Help Apply
4 m » Contenks Search Results

5 Select my_first_code > Configuration, in the Model Hierarchy.
6 Select Code Generation in the Configuration.

The Code Generation configuration parameters open.
7 Select the General tab.

Set the System target file to ert.tlc (Embedded Coder).

1 Getting Started with Model Link Products

1-8

Code Generation

General Repark Comments Symbials Custom Code Debug Inkerface SIL and PIL Yerification | il]

-

Target seleckion

Syskem target file: ert.tlc

Browse. ..

Compiler optimizatid |#Utosar.tlo

cleg.tle
TLIC options:

cléd_grt.tlco

Makefile configur.

Generate mal |ert.tle
ert_shrlib.tle

grr.tlec
Template makefilg | gre v1c

Make command:

grt_malloc.tlc
Data specification o grt_malloc.tlo

idelink ert.tlc
4 | i

|:| Ignore cuskom

Ternplate Makefile: ert_default_tmf
Make Command: make_rtw

L H . .

S E System Target File Browser: my_first_code @
Description: System Target File: Description:

Build process asapz.tle ASAM-ASAPZ Data Definition =

AUTCSAR

Target Support Package [(for
Target Support Package (fn:n:E
Emia er
Create Visual C/C4++ Zolutic—
Ewbhedded Coder (host-based
Generic Real-Time Target
Create Visual C/C4+4+ Solutic
Generic Real-Time Target wi
Create Visual C/C4+4+ Solutic

IDE Link ERT T
[

Full Mame: CProgram Files (xBEMMATLABVR2011aY twhhertiert. tlc

[oK H Cancel ” Help ” Apply]

3

m

=lp Apply

8 Select the Report tab.

9 Select Create code-generation report, then select Code-to-model

Navigation.

Tutorial: Verifying Code from a Simple Model

Code Generation

General Report Comments Symbiols
| Create code generation report

Mavigation

V| Code-to-model

Model-to-code | Confiqure. ..

Traceability Report Contents
Eliminated | virtual blocks
Traceable Simulink blocks
Traceable Stateflow objects

Traceable MATLAB functions

J

Custarn Code Debug Intetface SIL and PIL Werification [alﬂ .

/| Launch report automatically

m

Revert Help | | Apply

10 Select the Templates tab.

1-9

1 Getting Started with Model Link Products

1-10

Code Generation

Comments I Symbols | Custom Code | Debug | Intetface

SIL and PIL Yerification | Code Style | Templates m -

Code templates

Source file {*.c) template: ert_code_template.cgt
Header file (*.h) templake: ert_code_template.cqt
Data templates

Source file {*.c) template: ert_code_template.cgt
Header file (*.h) template: ert_code_template.cgt
Custom kemplates

File customization template: example_file_process, o

|:| Generate an example main program

J

Browse. .. Edit...
Browse. .. Edit...

Browse. .., Edit...
Browse. .. Edit...

Browse. .. Edit...

Revert

m

I

Help

J

Apply

11 In the Custom templates section, clear Generate an example main

program.

12 Select the Interface tab.

Tutorial: Verifying Code from a Simple Model

Code Generation

General Report | Comments | Symbols | Custom Code | Debug | Inkerface SIL and PIL Yerification | Ak

Software environment

Target function library: ICSQ,I’CQD {ANST) v]

Utility code generation: Inuto -]

Support: floating-point numbers non-finite numbers complex numbers =
absolute time [continuous time] non-inlined S5-Functions

[variable-size signals

Multiword type definitions: ISystem defined -]

Code interface
[T GRT compatible call interface Single outputfupdate Function Terminate function required

[Generate reusable code

Generate preprocessor conditionals: lUse local settings -

Suppress error status in real-time model data structure [7] Combine signalfstate structures

I Configure Model Functions I

Data exchange

[raT-file logging

Interface: lNone -]

J Revert I Help I I Apply I

13 In the Code interface section, select suppress error status in real-time
model data structure.

14 Click Apply in the lower-right corner of the window.
15 In the Configuration Preferences, select Solver.

The Solver configuration parameters appear.

1-11

1 Getting Started with Model Link Products

1-12

Contents of: my_first_cods Solver
———— . X Simulation time
Column Yiew: | Default w | Show Details 9 objectis)
Start time: 0.0 Stop time: 10,0
Mame ElockType
@ Solver Solver options
& DataImport/Export
@ Optimization Type: |F\xadfstep - | Salver: |discrete {no conkinuous states) -
@ Diagnostics Fixed-step size (Fundamental sample time): auto
@ Hardware Implementation
€ Model Referendng Tasking and sample time options
@ Simulation Target
& Code Generstion Periodic sample time constraink: |Uncun5trained - |
HDL Code Generation Tasking made for periodic sample times: |Auto hd |
Automatically handle rate transition for data transfer
Higher priority walue indicates higher task priority
J Revert Help Apply
Conkents Search Resulks

16 In the Solver options section, set the solver Type to Fixed-step. Then, set
the Solver to discrete (no continuous states).

17 Click Apply.

18 From the Simulink model window, select Tools > Code
Generation > Build Model to generate code.

19 Save your Simulink model.

Run Polyspace Verification

To start the Polyspace verification:

1 From the Simulink model window, select Tools > Polyspace > Run
Verification.

The verification starts, and you see messages in the MATLAB Command
Window.

Tutorial: Verifying Code from a Simple Model

Polyspace Model-Link for Embedded Coder

Version MBD-5.7.0.6 (R2011a)

Preparing code verification

Creating results folder

Analysing subsystem: my_ first_code

Locating generated source files:
H:\Documents\MATLAB\my_first code_ert_rtw\ert_main.c ok
H:\Documents\MATLAB\my_first code_ert_rtw\my_first_code.c ok

Generating DRS table
my_first_code_U.In1 min max init
my_first_code_U.In2 min max init

Computing code verification options

Starting code verification

2 Follow the progress of the verification in the MATLAB Command window.

Note Verification of this model takes about a minute. A 3,000 block model
will take approximately one hour to verify, or about 15 minutes for each 2,000
lines of generated code.

View Results in Polyspace Verification Environment

When the verification is complete, you can view the results using the
Run-Time Checks perspective of the Polyspace verification environment.

To view your results:

1 From the Simulink model window, select Tools > Polyspace > Open
results.

After a few seconds, the Run-Time Checks perspective of the Polyspace
verification environment opens.

1-13

1 Getting Started with Model Link Products

Check details

Review statistics

File Edit Run Review Options Window Help

T EEEE BRI

EHE |75 [Metosoiogy s
= Run-Time Checks -8
T %% x|

Procedural entities 1 x| 2| example.c f Recursion_caller /line 157 / column 5
. Dema_C {cov: 82%, unp: 1/48) 8 |8 |18 [259 Recurzion{ sx); // always encounters a division by zerc
Elrexsmple o 4 | 2 | 2|83 || assification Status ustified

2 |10 = =g

Non_infinite_Loop () 11 | | |comment

Fointer_Arithmatic | } 101 19

Coding review progress Count Progr
[Red NTC justified / to justify o4 0
Red justified / to justify 0/8 0

|Gray justified / to justify 0f6 0
(Orange justified] to justify 018 0
' [Software reliability indicator 259/297 &7

RTE() 1 3

cursion 1|14

[EHRecursion_caller () 1 4
bl IRV.0 1
F NIVL3 1 144
" NIVLZ 1 145 if (*depth £ 50
1 [' !
ot IRV.4 1 Recursion(depth):
EH-Square_Root () 1 4) }
o IRV.0 1
e NIV 1 151 static woid Recursion_caller (void)
% sTD_LIEBS 1 152 { int x=randow int();
' NIVLZ 1 ii
e ' 155 if ((x2-4) & (x £ -1))
EB}-Square_Root_conv () 8 15e ¢ S
E3-Unreachsble_Code () = 157 Recursion{ sx); 4/ always encounters a division by 2H|
Bget_oil 1|2 158 }
E-initislisations o 1]1 |41 158
#-main.c EARRERER |
[#1-single_file_anslysis.c 2|2 s s)15t L
162 if (remdom int{) > 0)
[-tasis o 2|2l 13 F—
B-tass2c 1|18 164 Recursion| &); /¥ never encounters a division by =t
[#-__polyspace__stdstubs.c 165 }
166
[F—— | ‘
{-3- Run-Time Checfs J 2 Assistzntchedsl 4 I
b 0% .I Demo_C Source file: example.c examplejc Line: 157 Column: 5
Run-time checks Source code

2 Type CTRL-N to go to the first error.

1-14

-2 Expanded Source Code | § Review Statistics

Calls

P pst_stubs_0.random_int
P example Recursion
b pst_stubs_O.random_int

P example.Recursion

4 exsmple.RTE

0_’&' H-sHR 0

Varisbles

¢ initialisations am

H-initialisations.cument_data

#-initialisations first_psilosd

H-initialisations second_psilosd

- initialisations.tsb

t-single_file_analysis.output_v1

£ single_file_analysis.output_v8

[|

Variable access

Call hierarchy

Tutorial: Verifying Code from a Simple Model

#"Run-Time Check:

T % |||y

Procedural entities ¥ 12| 7|+ %|Line
2 my_first_code o|of1|2z|os
---ert_rnain.c u] 1
I_—i_l---myr_first_code.c T4 |eaf 1
-_init_glabalz () a 1
[my_first_code_initialize () 2 |[1oof 42
B-my_first_code_step) Tz |87 24
: 1 1]
1 38
1 a8
~my_first_code_terminate () [N]
[#-=tdio.h u] 1
- polyspace_ stdstubs.c o (ool 1
&E-__polyspace_main.c 0 Mool 1
4 | i | b

3 Click the orange OVFL check.

The Check Review pane shows information about the orange check, and the
Source pane shows the source code containing the orange check.

1-15

1 Getting Started with Model Link Products

1-16

=

CALLS INPUT

Iy ¥= ¢

m_first_code.c | my_first_code_step | line 35 | column 45

| »

uy_first code T.0utl = wy first code U.Inl ° wy first code T.InZ;
Classification Status Justified Camment
=] =0 |

[lhproven @ operation [#] on float may overflow (on MIN or MAY bounds of FLOATA4)

operator ¥ on type float 64

m

lefr: [-1.7977E "% . 1.7977ETH

right: [-1.7977E °°% ., 1.7977E °"%)

result: full-range [-1.7377E°°°°% .. 1.7977E"°"%] -
my_first_rode.c | ert_main.c | 4 r B
26 /% Real-time model */ -
27 RT_MODEL_my first code my first code M ;
28 RT_MODEL_my first code *const my first code M = smy first code M !
z9
30 /% Model step function */
31 wvoid my first code_step(woid) ¥
3z i E
33 A% Dutport: '<Root>/0utl' incorporates:
34 * Inport: '<£Root:/Inl'
35 * Inport: '<£Root:/InZ'
36 * Product: 'fRootx/Product'
37 *
38 wy first code ¥.0utl = wy first code U.Inl ¥ wy first code U.InZ;
39 3 o

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. Polyspace software assumes that

the signal values are full range, and the multiplication of the two signals
may result in an overflow.

Trace Error to Simulink Model

To fix this overflow issue, you must return to the Simulink model.

To trace the error to your model:

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane.

The Simulink model opens, highlighting the block with the error.

Tutorial: Verifying Code from a Simple Model

B my first_code =% (EeR ==
File Edit Wiew Simulation Format Tools Help
O =E&E » |'|U.D |N0rmal j
In1 o -1
Cutt
’
In2

Product

Ready 100%% T=0.00 FixedStepDiscrete

2 Examine the model. The highlighted block multiplies two full-range
signals, which could result in an overflow.

The verification identified a potential bug. This could be a flaw in either:

¢ Design — If the model should be robust against the full signal range, it
is a design bug. In this case, you must change the model to accommodate
the full signal range. For example, you could saturate the output of the
previous block, or bound the signal with a Switch block.

¢ Specifications — If the model is designed to work within specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The verification will then read these ranges from the model,
and the check will turn green.

Specify Signal Ranges

If you constrain the signals in your Simulink model to specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. The OVFL check will then be green in the verification
results.

To specify signal ranges using source block parameters:

1-17

1 Getting Started with Model Link Products

1-18

1 Double-click the In1 source block in your model.

2 The Source Block Parameters dialog box opens.

Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, 'Latch input by delaying outside signal'
produces the value of the subsystem input at the previous time step.

this subsystem from changing during its execution.

attributes.

- Signal Attributes

E Source Block Parameters: Inl @

For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to

The other parameters can be used to explicitly specify the input signal

[] output function call

Minimum: Maximum:

-15 15

Port dimensions (-1 for inherited):

-1

Data type: Inherit: auto -

[7] Lock output data type setting against changes by the fixed-point tools

Variable-size signal: ’I.nherit

Sample time (-1 for inherited):
-1

Signal type: ’auto

Sampling mode: ’auto

J [OK H Cancel H Help

3 Select the Signal Attributes tab.
4 Set the Minimum value for the signal to -15.

5 Set the Maximum value for the signal to 15.

Tutorial: Verifying Code from a Simple Model

6 Click OK.
7 Repeat steps 1-6 for the In2 block.

8 Save your model as my_first_code_bounded.

Verify Updated Model

After changing your model, you must re-generate code and run verification
again.

To regenerate code and relaunch verification:

1 From the Simulink model window, select Tools > Code
Generation > Build Model.

The software generates code for the updated model.
2 Select Tools > Polyspace > Run Verification.
The software verifies the generated code.
3 Select Tools > Polyspace > Open results.
Verification results open in the Polyspace verification environment.

4 Examine the results in the Run-Time Checks perspective.

1-19

1 Getting Started with Model Link Products

1-20

“Run-Tir

41 o

F| % |||
Procedural entities 1 || 2| | » e _first_code_bounded.c [my_first_code_bounded_step [line 40§ column 43 -
L my_first_code_bounded ofofo |15 Moo wy first code_bounded YV.0utl = wy entryl ¥ wmy entryi;
'"e"t_""'ain-c 0 Classification Status Justified Comment
L—i_|---rn3,r_first_-:ode_bounded.c 5 |100 vl v] | L
~_init_glebals() u] 1
Operation [*] on float does not overflow in FLOATEd range
[my_first_code_bounded_in 2 o0
operator ¥ on type float 64
? b left: [-1.5E% .. 1.5E7] L
; right: [-1.5E% .. 1.5E'1]
+z +z
1 result: [-Z.2501E ° .. Z.Z501E 7] -
~my_first_code_bounded_te u] <" Source
[H-=tdia.h 0 my_First_rode_hounded.c | 4 ¢ @
[#l-__polyspace__stdstubs.c o -
27 /% Beal-time nmodel */
BF-__polyspace_main.c O 28 BT MODEL wy first code bounded my first code bounded M ;
29 RT MODEL wmy first code_bounded *const wy first code bounded M =
30 smy_firat_code_bhounded M :
31
32 /% Model step function */
33 woid my_first_code_bounded_stepwoid) -
34 { I
35 A% Outport: '<Rootkx/0utl' incorporates:
36 * Inport: '<Root:/Inl'
37 % TInport: '<Root>/Ind'
38 * Product: '<Rootx/Product'
34 w4
40 wy first code bounded ¥.0utl = wy entryl ¥ wy entrya;
4 i i ! -
I‘—?- Run-Time Checks ‘ A fssistant Checksl 4 n | +

The OVFL check is now green. Polyspace verification has confirmed that
no Runtime Errors are present in the model.

Configure Model for Code
Verification

® “Overview of Model Configuration for Code Generation and Verification”
on page 2-2

¢ “Configuring Simulink Model for Code Verification” on page 2-3
¢ “Recommended Model Settings for Code Verification” on page 2-5
e “Checking Simulink Model Settings” on page 2-7

® “Specifying Signal Ranges” on page 2-9

* “Annotating Blocks to Justify Known Checks or Coding-Rules Violations”
on page 2-14

2 Configure Model for Code Verification

2-2

Overview of Model Configuration for Code Generation
and Verification

To facilitate Polyspace code verification and the review of results:

® There are certain settings that you should apply to your model before
generating code. See “Recommended Model Settings for Code Verification”
on page 2-5.

¢ Polyspace Model Link SL software allows you to check your model
configuration before starting a verification. See “Checking Simulink Model
Settings” on page 2-7

® You can constrain signals in your model to lie within specified ranges. See
“Specifying Signal Ranges” on page 2-9.

® You can highlight blocks that you know contain checks or coding
rule violations. See “Annotating Blocks to Justify Known Checks or
Coding-Rules Violations” on page 2-14.

Configuring Simulink Model for Code Verification

Configuring Simulink Model for Code Verification
To configure a Simulink model for code generation and verification:

1 Open Model Explorer for your model.

8} Model Explorer =
File Edit ‘iew Jools Add Help
S BB BHEEMI Fo @R FR2A
Search: by Name ~ Name! %’ Search
Maodel Hierarchy W % | | contents of: my_first_code Code Generation
4[] simulink Roat . i General | Repart | C ts | symbols | CustomcCode | Deb Inkerf -
Colurnn View: | Defaulk « | Show Detalls 3 obieckis: Spor Omments ymbols ustarn Code =bug nterface
ﬁ Base Workspace N
Target selection
4 W my_first_code Hame BlockType e
Model Workspace & sakver System karget filer grb.tic Browse. ..
Cade for my_first_code
@ _ b & Data Inport/Export Language: = =
P Advice for my_first_code
L & Optimization £
F¥] simulink Design verifier ’ : P process
iy Configuration [Active) # Disgnostics
& Hardware Implementation Compiler optimization level: Optimizations off (Faster buids) +
Model Referencing TLC optians:
Simulation Target
o c Maksfile confiqurstion
4 Code Generation
HDL Code Generation B] Genersts makefils
IMake command: make_rtw
Template makefile: grt_defaul_tmf
« . v
\)_ Revert Help Apphy
< 1 3 Cantents Search Resulks

2 In the Configuration for your model, select Code Generation.
The Code Generation configuration parameters open.

3 In the General tab, set the System target file to ert.tlc (Embedded
Coder).

4 In the Report tab, select:
¢ Create code-generation report

¢ Code-to-model Navigation.

5 In the Templates tab, clear Generate an example main program.

2-3

2 Configure Model for Code Verification

6 In the Interface tab, select suppress error status in real-time model
data structure.

7 Click Apply to save your changes.
8 In the Configuration for your model, select Solver.

The Solver configuration parameters appear.

Contents of: my_first_cods Solver

———— . X Simulation time
Column Yiew: | Default w | Show Details 9 objectis)

Start time: 0.0 Stop time: 10,0
Mame BlockType

@ Solver Solver options
& DataImport/Export
@ Optimization Type: |F\xadfstep - | Salver: |discrete {no conkinuous states) -
& Diagnostics Fixed-step size (Fundamental sample time): auto

@ Hardware Implementation
% Model Referencing
@ Simulation Target

Code Generation
HDL Code Generation Tasking made for periodic sample times: |Auto hd |

Tasking and sample time options

Periodic sample time constraink: |Uncun5trained - |

Automatically handle rate transition for data transfer

Higher priority walue indicates higher task priority

J Revert Help Apply

Conkents Search Resulks

9 In the Solver options section, set:
e Type to Fixed-step.

® Solver to discrete (no continuous states).
10 Click Apply to save your changes.

11 Save your model.

2-4

Recommended Model Settings for Code Verification

Recommended Model Settings for Code Verification

For Polyspace verification, MathWorks recommends that you configure your
model with the following settings before generating code.

Parameter Recommended How you specify value in | If you do
value for Polyspace | Configuration Parameters | not use
verification dialog box recommended
value,
Polyspace
Model Link SL
generates ...
InitF1ltsAndDbls ‘on' Select check box Warning
ToZero Optimization > Use
memset to initialize floats
and doubles to 0.0

InlineParams ‘on' Select check box Warning
Optimization > Signals
and Parameters > Inline
parameters

MatFilelLogging ‘off!' Clear check box Code Warning

Generation > Interface >
MAT-file logging
MultiInstanceERT "off!' Clear check box Code Warning
Code Generation > Interface >
Generate reusable code
Solver 'FixedStepDiscrete'| Select discrete (no Warning
continuous states) from
Solver > Solver drop-down
list
SystemTargetFile ‘ert.tlc' Specify ert.tlc (for Error
Embedded Coder) in Code
Generation > System
target file

2 Configure Model for Code Verification

TargetLang 'C' Select C from Code Error
Generation > Language
drop-down list
ZeroExternalMemory | 'off' when Clear check box Warning
AtStartup Configuration Optimization > Remove

Parameters >
Polyspace Model
Link > Data Range
Management >
Output is Global
assert

root level I/0O zero
initialization

Checking Simulink Model Settings

Checking Simulink Model Settings

With Polyspace Model Link SL software, you can check your model settings
before starting a verification:

1 From the Simulink model window, select Tools > Polyspace > Options.

The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link pane.

2 Click Check configuration. If your model settings are not optimal for
Polyspace verification, the software displays warning messages with
recommendations.

a Polyspace Model-Link: my_first_code EI@

View Font Size

Message Source Reported By Summary
o Configuration Warning my_first_code Polyspace Model-Link MathWorks recomme
«# Configuration Warning my_first_code Polyspace Model-Link MathWorks recomme

0 my_first_code

MathWorks recommends that you set 'ZeroExternalMemoryAtStartup’ to 'off'. On the
Simulation » Configuration Parameters = Optimization pane, check the 'Remove root level
I/ zero initialization' chedck box.

Qpen | | Help | | Close

For more information on model settings, see “Recommended Model Settings
for Code Verification” on page 2-5.

2-7

2 Configure Model for Code Verification

Note If you alter your model settings, build the model again to generate
fresh code. If the generated code version does not match your model version,
the software produces warnings when you run a verification.

2-8

Specifying Signal Ranges

Specifying Signal Ranges

If you constrain signals in your Simulink model to lie within specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. This can reduce the number of orange checks in your
verification results.

You can specify a range for a model signal by:

® Applying constraints through source block parameters. See “Specifying
Signal Range through Source Block Parameters” on page 2-9.

® Constraining signals through the base workspace. See “Specifying Signal
Range through Base Workspace” on page 2-11.

Note You can also manually define data ranges using the DRS feature in
the Polyspace Verification Environment. If you manually define a DRS file,
the software automatically appends any signal range information from your
model to the DRS file. However, manually defined DRS information overrides
information generated from the model for all variables.

Specifying Signal Range through Source Block
Parameters

You can specify a signal range by applying constraints to source block
parameters.

Specifying a range through source block parameters is often easier than
creating signal objects in the base workspace, but must be repeated for each
source block. For information on using the base workspace, see “Specifying
Signal Range through Base Workspace” on page 2-11.

To specify a signal range using source block parameters:

1 Double-click the source block in your model, for example, Int.

2 The Source Block Parameters dialog box opens.

2 Configure Model for Code Verification

2-10

E Source Block Parameters: Inl @
Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, 'Latch input by delaying outside signal’
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

- Signal Attributes

[7] output function call

Minimum: Maximum:

-15 15

Data type: Inherit: auto -

[7] Lock output data type setting against changes by the fixed-point tools
Port dimensions (-1 for inherited):

-1

Variable-size signal: Ilnherit hd

Sample time (-1 for inherited):

-1
Signal type: [auto v]
Sampling mode: lauto v]

J [oK H Cancel H Help

3 Select the Signal Attributes tab.
4 Set the Minimum value for the signal to -15.

5 Set the Maximum value for the signal to 15.

6 Click OK.

Specifying Signal Ranges

Specifying Signal Range through Base Workspace

You can specify a signal range by creating signal objects in the MATLAB
workspace. This information is used to initialize each global variable to the
range of valid values, as defined by the min-max information in the workspace.

Note You can also specify a signal range by applying constraints to
individual source block parameters. This method can be easier than creating
signal objects in the base workspace, but must be repeated for each source
block. For more information, see “Specifying Signal Range through Source
Block Parameters” on page 2-9.

To specify an input signal range through the base workspace:

1 Configure the signal to use the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Signal Properties.
The Signal Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entryf.
¢ Select the Code Generation tab.
d From the Package drop-down menu, select Simulink.

e In the Storage class drop-down menu, select ExportedGlobal.

2-11

2 Configure Model for Code Verification

rﬂ Signal Properties: my_entryl ﬁ1

Signal name: my_entryl
[7] signal name must resolve to Simulink signal object
| Logging and accessibility | Code Generation | Documentation |
Package: [Simulink v] ’ Refresh]
Storage class: [ExportedGIobaI v]
Alias:

0K l [Cancel] [Help] [Apply

f Click OK, which applies your changes and closes the dialog box.

2 Using Model Explorer, specify the signal range:
a Select View > Model Explorer to open Model Explorer.
b In the Model Hierarchy, select Base Workspace.

¢ Click the Add Simulink signal button to create a signal. Rename this
signal, for example, my_entryi.

d Set the Minimum value for the signal, for example, to -15.
e Set the Maximum value for the signal, for example, to 15.

f From the Storage class drop-down list, select ExportedGlobal.

2-12

Specifying Signal Ranges

@ Model Explorer

Eile Edit Wiew Tools Add

< $B@X BEHE

Help

LEE Y 0@

Search: by Name ~ Mame: Search
Mode! Hierarchy B | Corterts of: Base warksp: |
] Simulink Root
E Colurnn View: Show Details 2 ohject(s
H Base Workspace
4 E my_first_code® Marme SourcePort SignalPropagation
m Model Warkspace £ my_entryl
- Code fi first_cad,
&§h Code for my._first_code B etz
@ Adwice for my_first_code
j simulink Design Verifier
% Configuration [Active]
4 n [
< I 3 Contents | Search Results

4B FTO2E

Simulink.Signal: my_entry2

Data type: auto -
Complexity:
Dimensions: -1 Dimensions mode:
Sample time: -1 Sample mode:
Minirmurn: -15 Maximurn: 15
Initial valoe: Units: L
Code generation options
Storage class: | Exportedalobal -]
Alias:
Description:
Revert J I Help I I Apply

g Click Apply.

2-13

2 Configure Model for Code Verification

Annotating Blocks to Justify Known Checks or
Coding-Rules Violations

You can annotate individual blocks in your Simulink model to inform
Polyspace software of known run-time checks or coding-rule violations.

This allows you to highlight and categorize checks identified in previous
verifications, so that you can focus on new checks when reviewing verification
results.

The Polyspace Run-Time Checks perspective displays the information that
you provide with block annotations, and marks the checks as Justified.

To annotate a block:

1 In the Simulink model window, right-click the block you want to annotate.

2 From the context menu, select Polyspace > Annotations > Edit. The
Polyspace Annotation dialog box opens.

E Polyspace Annotation: Productl @
Description

You can annotate blocks in your Simulink model to inform Polyspace software of known
run-time checks or coding-rule violations. This allows you to highlight previously
identified checks in your verification results, so you can focus on new checks.

Annotation

Annotation type: |Check - |

V| Only 1 check

Select RTE check kind: | v |
Status: | v|
Classification: | - |
Comment:

[oK] | Cancel | | Help | Apply

3 From the Annotation type drop-down list, select one of the following:

2-14

Annotating Blocks to Justify Known Checks or Coding-Rules Violations

® Check — To indicate run-time error

® MISRA — To indicate coding rule violation

4 If you want to highlight only one check, select Only 1 check and the
relevant run-time check (or MISRA rule) from the Select RTE check
kind (or Select MISRA rule) drop-down list.

If you want to highlight a list of checks, clear Only 1 check. In the Enter
a list of checks (or Enter a list of rule numbers) field, specify the
run-time checks or MISRA rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:
® Fix
e Improve
® Investigate
® Justify with annotations
® No Action Planned
® Other
® Restart with different options

® Undecided

6 Select a Classification to describe the severity of the issue:

High
Medium

e Low

Not a defect
7 In the Comment field, enter additional information about the check.

8 Click OK. The software adds the Polyspace annotation is to the block.

2-15

2 Configure Model for Code Verification

17] my_first_code * EI@

File Edit View Simulation Format Tools Help

O2E& & I |1D.D |N0rrna| j

x

Out

Product
Polyspace annotstion

Ready 100% FixedStepDiscrete

2-16

Configure Code Verification
Options

e “Overview of Polyspace Configuration” on page 3-2

® “Including Handwritten Code in Verification” on page 3-3

e “Configuring Data Range Settings” on page 3-5

® “Configuring Polyspace Analysis Options” on page 3-7

® “Configuring Polyspace Project Properties” on page 3-9

e “Creating a Polyspace Configuration File Template” on page 3-10
® “Specifying Header Files for Target Compiler” on page 3-13
e “Specifying Location of Results” on page 3-14

e “Main Generation for Model Verification” on page 3-15

® “Polyspace Model Link SL Considerations” on page 3-17

® “Polyspace Model Link TL Considerations” on page 3-25

3 Configure Code Verification Options

3-2

Overview of Polyspace Configuration

You do not have to manually create a Polyspace project or specify Polyspace
analysis options before running a verification for your generated code. By
default, when you start a verification, Polyspace automatically creates a
project and extracts the required information from your model. However, you
can modify or specify additional options for your verification:

®* You may incorporate separately created code within the code generated
from your Simulink model. See “Including Handwritten Code in
Verification” on page 3-3.

¢ By default, the Polyspace verification is contextual and treats tunable
parameters as constants. You can specify a verification that considers
robustness, including tunable parameters that lie within a range of values.
See “Configuring Data Range Settings” on page 3-5.

® You may customize the analysis options for your verification. For example,
to specify the target environment or adjust precision settings. See
“Configuring Polyspace Analysis Options” on page 3-7 and “Recommended
Polyspace Analysis Options for Generated Code” on page 3-18.

* You may create specific configurations for batch runs. See “Creating a
Polyspace Configuration File Template” on page 3-10.

e If you want to verify code generated for a 16-bit target processor, you must
specify header files for your 16-bit compiler. See “Specifying Header Files
for Target Compiler” on page 3-13.

Including Handwritten Code in Verification

Including Handwritten Code in Verification

Files such as S-function wrappers are, by default, not part of the Polyspace
verification. You can add these files manually. Steps for Polyspace Model

Link SL are shown here.

To add a file to a verification:

1 From the Simulink model window, select Tools > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace

Model Link SL pane.

2 Select the Enable additional file list check box. Then click Select files.

The Files Selector dialog box opens.

E Files Selector
Additional files to analyze:

q

Add

Remove

i

Remaove all

!

l | Cancel

3 Click Add. The Select files to add dialog box opens.

4 Use the Select files to add dialog box to:
¢ Navigate to the appropriate folder
® Add the required files.

3-3

3 Configure Code Verification Options

The software displays the selected files as a list under Additional files
to analyse.

Note To remove a file from the list, select the file and click Remove. To
remove all files from the list, click Remove all.

5 Click OK.

3-4

Configuring Data Range Settings

Configuring Data Range Settings

There are two approaches to code verification, which can produce results that
are slightly different:

* Contextual Verification — Prove code works under predefined working
conditions. This limits the scope of the verification to specific variable
ranges, and verifies the code within these ranges.

* Robustness Verification — Prove code works under all conditions,
including “abnormal” conditions for which the code was not designed. This
can be thought of as “worst case” verification.

For more information, see “Choosing Robustness or Contextual Verification”
in the Polyspace Products for C/C++ User’s Guide.

Note The software supports data range management only with Simulink
Version 7.4 (R2009b) or later.

Polyspace Model Link SL allows you to run either contextual or robustness
verification by the way you specify data ranges for model inputs, outputs, and
tunable parameters within the model.

Tunable
Input Parameter Output

Gain

To specify data range settings for your model:
1 From the Simulink model window, select Tools > Polyspace > Options.

The Configuration Parameters dialog box opens, displaying the Polyspace
Model Link SL pane.

3-5

3 Configure Code Verification Options

3-6

2 In the Data Range Management for Model section, specify how you want
the verification to treat :

a Input — Select one of the following:

e Contextual (Default) — Apply data ranges defined in blocks or base
workspace to increase the precision of the verification. See “Specifying
Signal Ranges” on page 2-9.

® Robustness — Assume all inputs are full-range values (min. . .max)
b Tunable parameters — Select one of the following:

® Specific calibration (Default) — Use value of constant parameter
specified in code.

® Generic calibration — Use a parameter range defined in the block
or base workspace. See “Specifying Signal Ranges” on page 2-9. If no
range defined, use full range (min. . .max).

¢ Output — Select one of the following:
® None (Default) — No assertion ranges on outputs.

® Global assert — Use assertion ranges on outputs.

Note The Global assert mode is incompatible with the Automatic
Orange Tester.

In general, you should use the following combinations:
® Contextual mode for inputs and Specific calibration mode for tunable
parameters to maximize verification precision

® Robustness mode for inputs and Generic calibration mode for tunable
parameters to verify the worst cases of program execution

Configuring Polyspace Analysis Options

Configuring Polyspace Analysis Options

Polyspace Model Link software supports a simplified version of the Polyspace
Project Manager, which allows you to customize the analysis options and
project properties for your verification. For example, you can specify the
target processor type, target operating system, and compilation flags.

To open the Project Manager:

1 From the Simulink model window, select Tools > Polyspace > Configure

Project.

File Edit “Window Help

=+ Palyspace H\Documents\MATLAE vy first_code_boun... E\@

H ‘ E‘Search: - ,@ ‘
L2
Marne Walue Internal name
Analysis options
[H-General
----- Send to Polyspace Server -server
----- Add ko results repository E -add-to-results-repository:
----- Keep all prefiminary results files E -keep-all-files
----- Caloulate code metrics E -code-metrics
El-Report Generation E
- Repart template name Developer -report-template
i ukpUt Format RTF -report-oukput-Farmat
[#-Target)Carmpilation
[#-Campliance with skandards
[#-Polyspace inner settings
[#--PrecisionfScaling
[#-Multitasking

The first time you open the configuration, the software sets the following

options:

® -0S-target — Set to no-predefined-0S

® _results-dir — Set to results

3 Configure Code Verification Options

3-8

The software also configures other options automatically, but the
settings depend on the code generator used. See “Polyspace Model
Link SL Considerations” on page 3-17 and “Polyspace Model Link TL
Considerations” on page 3-25.

Set other options as needed for your application.
For a list of recommended options for verifying generated code, see
“Recommended Polyspace Analysis Options for Generated Code” on page

3-18.

For descriptions of all analysis options, see “Option Descriptions for C
Code” in the Polyspace Products for C/C++ Reference.

Configuring Polyspace Project Properties

Configuring Polyspace Project Properties

You can specify project properties, for example, your project name, through
the Polyspace Project - Properties dialog box. To open this dialog box,

1 From the Simulink model window, select Tools > Polyspace > Configure
Project.

=]
2 On the Project Manager toolbar, click the Project properties icon J

~*- Palyspace Project - Praperties @
Project definition and location

Project name: my_first_code_polyspace
Version: 1.0

Author: |username

Default location

Location: |H:\Documents MATLAE,

Project lanquage
C

T+

Back. Mexk | Firish | | Zancel

3-9

3 Configure Code Verification Options

Creating a Polyspace Configuration File Template

During a batch run, you may want use different configurations for verification.
The software provides the command PolyspaceSetTemplateCFGFile, which
allows you to apply a configuration defined by a configuration file template.
See “MATLAB Functions For Polyspace Batch Runs” on page 4-8.

To create a configuration file template:

1 In the Simulink model window, select Tools > Polyspace > Configure
project.

The Project Manager opens, allowing you to customize the target and
cross compiler.

= Palyspace H\Documents\MATLAB Ny _first_code_bounded_polyspace.cfg E\@
File Edit “Window Help

= ‘ B ‘Search: - ’@ |

s

Mame Value Inkernal name

Analysis opkions
[#-zeneral

----- Targek processar type 1356 - -Larget
-O5-target
-0

----- Undefined Preprocessor Macros -l

(o]
(o]
(o]
..... Includs [|[Hinclude
()
()
(]

----- Targek operating system Linuz -

----- Defined Preprocessor Macros main=rain_rkwec

-1
-post-preprocessing-command

----- Include Folders

----- Caommandfscript ko apply to preprocessed Files

----- Command)script ko apply after the end of the code -piost-analysis-command

- Compliance with standards

- Polyspace inner settings

- PrecisionfScaling
- Multitasking

F--FAELE

2 The Target processor type (-target) option defines the size of data types.

3-10

Creating a Polyspace Configuration File Template

a From the drop-down list in the Value column, select mcpu (Advanced).

The Generic target options dialog box opens.

—* Generic target options @

Enter the target name
Default result of signed right shift | Arithmetical (Default) -
Endianness Little endian -
8hits 16bits 3Zbits G4bits

Char @ | Signed

Short

Int

Long

Long long

Float

Double/Long double

@ B @ e

Pointer @

Alignment @

Save || Cancel |

Use this dialog box to create a new target and specify data types for the

target. Then click Save.

3 The Defined Preprocessor Macros (-D) option allows you to define
preprocessor macros for your cross-compiler. Click the ... button. The
Defined Preprocessor Macros dialog box opens.

3-11

3 Configure Code Verification Options

3-12

-~ Defined Preprocessor Macros @

Defined Preprocessor Macros [-0]

main=main_rtwec

[oK || cancel |

To add a macro, in the field under Defined Preprocessor Macros (-D)
enter the required text. Click the + button. The software adds your macro
to the displayed list.

To remove a macro, select the macro and click the - button.

Note If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

When you have added or removed the required macros, click OK.
4 Save your changes and close the Project Manager.

5 Make a copy of the updated project configuration file, for example,
my_first_code_polyspace.cfg.

6 Rename the copy, for example, my_cross_compiler.cfg. This is your new
configuration file template.

To make a template the configuration for verification, run the
PolyspaceSetTemplateCFGFile command in the MATLAB Command
Window. For example:

PolyspaceSetTemplateCFGFile ('C:\Work\my_cross_compiler.cfg')

Specifying Header Files for Target Compiler

Specifying Header Files for Target Compiler

If you want to verify code generated for a 16-bit target processor, you must
specify header files for your 16-bit compiler. The software automatically
identifies the compiler from the Simulink model. If the compiler is 16-bit and
you do not specify the necessary header files, the software produces an error
when you try to run a verification.

Note For a 32-bit or 64-bit target processor, the software automatically
specifies the default header file.

To specify header files (or folders containing header files) for your compiler:

1 Open the Polyspace Configuration pane: from the Simulink model window,
select Tools > Polyspace > Configure Project. Selecting Tools >
Polyspace > Options > Project Configuration > Configure also opens
this pane.

2 On the Configuration pane, expand the Target/Compilation node.

3 To specify files, click the ... button for the Include (-include) option. The
Include dialog box opens. If you want to specify folders, click the ... button
for the Include Folders (-I) option. In this case, the Include Folders
dialog box opens

4 Specify a header file (or folder) path by doing one of the following:
® In the text field, enter the file (or folder) path and click +.

e (Click button and use the Select a file (or folder) to include dialog box to
navigate to the required header file (or folder).

The software displays the list of specified header files (or folders) in the
dialog window. You can remove a header file (or folder) from the displayed
list by selecting the file (or folder) and clicking -.

3-13

3 Configure Code Verification Options

3-14

Specifying Location of Results

With Polyspace Model Link SL, you can specify a location for the results of
your verification:

1 From the Simulink model window, select Tools > Polyspace > Options.
The Configuration Parameters dialog box opens with the Polyspace Model
Link pane displayed.

2 In the Output folder field, specify the full path for your
results folder. By default, the software stores results in
C:\PolySpace_Results\results_model_ name.

Main Generation for Model Verification

Main Generation for Model Verification

When you run a verification using Polyspace Model Link SL, the software
automatically reads the following information from the model:

initialize() functions

® terminate() functions

step () functions

List of parameter variables

List of input variables

The software then uses this information to generate a main with the following
behavior:

1 It initializes parameters using the Polyspace option -variables
written-before-loop.

2 It calls initialization functions using the option
-functions-called-before-loop.

3 It initializes inputs using the option -variables written-in-loop.
4 It calls the step function using the option -functions-called-in-1loop.

5 It calls the terminate function using the option
-functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the
software considers all variables as entries, except for parameters and outputs.

For more information on the main generator, see “Main Generator Behavior
for Polyspace Software”.

Main for Generated Code

The following example shows how to use the main generator options to
generate a main for code generated from a Simulink model.

init parameters \\ -variables-written-before-loop

3-15

3 Configure Code Verification Options

init_fct() \\ -functions-called-before-loop
while(1){ \\ start main loop

init inputs \\ -variables-written-in-loop
step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

3-16

Polyspace® Model Link™ SL Considerations

Polyspace Model Link SL Considerations

In this section...

“Overview” on page 3-17

“Subsystems” on page 3-17

“Default Options” on page 3-17

“Data Range Specification” on page 3-18

“Recommended Polyspace Analysis Options for Generated Code” on page
3-18

Overview

The Polyspace Model Link SL product has been tested with Embedded Coder
software — see the Installation Guide for more information.

Subsystems

A dialog will be presented after clicking on the Polyspace for Embedded Coder
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list. The subsystem list is generated from the
directory structure from the code that has been generated.

Default Options

When using the Polyspace Model Link SL product, the software sets the
following Analysis options by default:

-sources path_to_source_code
-desktop

-D PST_ERRNO

-D main=main_rtwec

-I matlabroot\polyspace\include
-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-0S-target no-predefined-0S

3-17

3 Configure Code Verification Options

3-18

-results-dir results

Note matlabroot is the MATLAB installation directory.

Data Range Specification

The software automatically creates a Polyspace Data RangeSpecification
(DRS) file using information from the MATLAB workspace and block
parameters. This DRS information is used to initialize each global variable
to the range of valid values, as defined by the min-max information in the
workspace.

The main sources of information are Simulink.signals and
Simulink.parameters.

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace Verification Environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

For more information, see “Configuring Data Range Settings” on page 3-5.

Recommended Polyspace Analysis Options for
Generated Code

This section describes recommended Analysis options for verifying code
generated with Embedded Coder software. MathWorks recommends setting
these options in your Polyspace project before verifying generated code.

If you have Polyspace Model Link SL software, you can specify the
Analysis options for your Polyspace Project by selecting Tools > Polyspace
> Configure Project in the Simulink model window.

Polyspace® Model Link™ SL Considerations

Note For the following options, the values that you specify through the
Configuration Parameters > Polyspace Model Link SL pane override
the values specified in the Configuration pane:

-server
-main-generator
-functions-called-in-1loop
-functions-called-before-loop
-functions-called-after-loop
-variables-written-in-loop

-variables-written-before-loop

Option Recommended Value Comments
Polyspace Project — Properties
-1 See Comments Specifies the name of a folder to include

when compiling C sources. You can specify
only one folder for each I, but can use
the option multiple times.

A script to automatically determine - I
based on buildInfo is available

Target/Compilation Options

3-19

3 Configure Code Verification Options

Option

Recommended Value

Comments

-d

See Comments

Defines macro compiler flags used during
compilation.

Use one d for each line of the Embedded
Coder generated defines.txt file.

Polyspace Model Link SL does not do this
by default.

-0S-target

Visual

Specifies the operating system target for
Polyspace stubs.

This information allows the verification to
use appropriate system definitions during
preprocessing in order to analyze the
included files properly.

-target

1386

Specifies the target processor type. This
allows the verification to consider the
size of fundamental data types and the
endianess of the target machine.

You can configure and specify generic
targets. For more information, see Setting
Up Project for Generic Target Processors
in the Polyspace Products for C User’s
Guide.

Compliance with standards Options

-dos

Selected

You must select this option if the contents
of the include or source directory comes
from a DOS or Windows file system. The
option allows the verification to deal with
upper/lower case sensitivity and control
characters issues. Concerned files are:

e Header files — All include folders
specified (-I option)

e Source files — All source files selected
for the verification (-sources option)

3-20

Polyspace® Model Link™ SL Considerations

Option

Recommended Value

Comments

-allow-negative-
operand-in-shift

Selected

Allows a shift operation on a negative
number.According to the ANSI standard,
such a shift operation on a negative
number is illegal. For example, -2 << 2
If you select this option, Polyspace
considers the operation to be valid. For
the given example, -2 << 2 = -8

-misra?2

[all-rules |
file name]

Specifies that the software checks coding
rules in conformity to MISRA-C:2004. All
MISRA checks are included in the log file
of the verification. Options:

® all-rules — Checks all available
MISRA C® rules. Any violation of

MISRA C rules is considered a warning.

e filename — Specifies an ASCII file
containing a list of MISRA® rules to
check.

-includes-to-ignore

<MSVC dir>\VC\include

Specifies files or folders that are excluded
from MISRA rules checking (all files

and subfolders within the selected
folder). This option is useful when you
have non-MISRA C conforming include
headers.

Polyspace inner settings Options

-variables-written-
before-loop

public

Specifies how the generated main
initializes global variables.

By selecting public, every variable except
static and const variables are assigned
a "random" value, representing the full
range of possible values

3-21

3 Configure Code Verification Options

3-22

Option Recommended Value Comments

-functions-called unused Specifies how the generated main calls

-in-loop functions.
By selecting unused, every function is
called by the generated main unless it is
called elsewhere by the code undergoing
verification.

-ignore-float- Selected Specifies how the verification rounds

rounding

floats.

If this option is not selected, the
verification rounds floats according to the
IEEE® 754 standard — simple precision
on 32-bits targets and double precision on
targets that define double as 64-bits.

When you select this option, the
verification performs exact computation.

Selecting this option can lead to results
that differ from "real life," depending on
the actual compiler and target. Some
paths may be reachable (or not reachable)
for the verification while they are not
reachable (or are reachable) for the actual
compiler and target.

However, this option reduces the number
of unproven checks caused by float
approximation.

Precision/Scaling Options

Polyspace® Model Link™ SL Considerations

Option

Recommended Value

Comments

-0

2

Specifies the precision level for the
verification.

Higher precision levels provide higher
selectivity at the expense of longer
verification time.

MathWorks recommends you begin with
the lowest precision level. You can then
address red errors and gray code before

relaunching Polyspace verification using
higher precision levels.

Benefits:

A higher precision level contributes to a
higher selectivity rate, making results
review more efficient and hence making
bugs in the code easier to isolate.

The precision level specifies the algorithms
used to model the program state space
during verification:

® .00 corresponds to static interval
verification.

® -01 corresponds to complex polyhedron
model of domain values.

® -02 corresponds to more complex
algorithms to closely model domain
values (a mixed approach with integer
lattices and complex polyhedrons).

® -03 is suitable only for units smaller
than 1,000 lines of code. For such code,
selectivity may reach as high as 98%,
but verification may take up to an hour
per 1,000 lines of code.

-to

c-compile — When
checking MISRA

Specifies the phase after which the
verification stops. Each verification phase

3-23

3 Configure Code Verification Options

3-24

Option

Recommended Value

Comments

compliance only.pass0
— When verifying code for
the first time.

pass4 — When performing
subsequent verifications
of code.

improves the selectivity of your results,
but increases the overall verification time.

Improved selectivity can make results
review more efficient, and hence make
bugs in the code easier to isolate.

MathWorks recommends you begin by
running -to passO (Software Safety
Analysis level 0) You can then
address red errors and gray code before
relaunching verification using higher
integration levels.

Polyspace® Model Link™ TL Considerations

Polyspace Model Link TL Considerations

In this section...

“Overview” on page 3-25

“Subsystems” on page 3-25

“Default Options” on page 3-25

“Data Range Specification” on page 3-26
“Lookup Tables” on page 3-26

“Code Generation Options” on page 3-27

Overview
The Polyspace Model Link TL product has been tested with the some release

of the dSPACE Data Dictionary version and TargetLink Code Generator - see
the Installation Guide for more information.

As the Polyspace Model Link TL product extracts information from the
dSPACE Data Dictionary remember to regenerate the code before performing
a Polyspace verification. This ensures that the Data Dictionary has been
correctly updated.

Subsystems

A dialog will be presented after clicking on the Polyspace for TargetLink
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list.

Default Options
The following default options are set by the tool:

-I path to source code

-desktop

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic
-1 dspaceroot\matlab\TL\srcfiles\Generic
-1 dspaceroot/matlab\TL\srcfiles\i86\LCC

3-25

3 Configure Code Verification Options

3-26

-I matlabroot\polyspace\include
-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool
installation directories respectively.

Data Range Specification

The tool automatically creates Polyspace Data RangeSpecification (DRS)
information using the dSPACE Data Dictionary for each global variable. This
DRS information is used to initialize each global variable to the range of valid
values as defined by the min-max information in the data dictionary. This
allows Polyspace software to model every value that is legal for the system
during its verification. Further the Boolean types are modeled having a
minimum value of 0 and a maximum of 1. Defining the min-max information
carefully in the model can help Polyspace verification to be more precise
significantly because only range of reels values are analyzed.

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace Verification Environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

DRS cannot be applied to static variables. Therefore, the compilation flags -D
static= is set automatically. It has the effect of removing the static keyword
from the code. If you have a problem with name clashes in the global name
space you may need to either rename one of or variables or disable this option
in Polyspace configuration.

Lookup Tables

The tool by default provides stubs for the lookup table functions. This
behavior can be disabled from the Polyspace menu. The dSPACE data
dictionary is used to define the range of their return values. Note that a

Polyspace® Model Link™ TL Considerations

lookup table that uses extrapolation will return full range for the type of
variable that it returns.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option Clean
code and deselect the option Enable sections/pragmas/inline/ISR/user
attributes.

When installing the Polyspace Model Link TL product, the tlcgOptions

variable has been updated with 'PolyspaceSupport', 'on' (see variable in
'C:\dSPACE\Matlab\T1l\config\codegen\tl pre codegen_hook.m' file).

3-27

3 Configure Code Verification Options

3-28

Run Code Verification

¢ “Running Verification with Polyspace Model Link SL Software” on page 4-2
¢ “Running Verification with Polyspace Model Link TL Software” on page 4-4
¢ “Monitoring Verification Progress” on page 4-7

e “MATLAB Functions For Polyspace Batch Runs” on page 4-8

e “Archive Files for Polyspace Verification” on page 4-9

4 Run Code Verification

Running Verification with Polyspace Model Link SL
Software

To start Polyspace verification from the Simulink model window:

1 Select Tools > Polyspace > Run Verification.

Note You can also start verification from the Configuration Parameters
dialog box, by clicking Run verification on the Polyspace Model Link
pane.

The verification starts, and messages appear in the MATLAB Command
window:

Polyspace Model-Link for Embedded Coder

Version MBD-5.7.0.6 (R2011a)

Preparing code verification

Creating results folder

Analysing subsystem: my_first_code

Locating generated source files:
H:\Documents\MATLAB\my_first_code_ert_rtw\ert_main.c ok
H:\Documents\MATLAB\my_first_code_ert_rtw\my_first_code.c ok

Generating DRS table
my_first_code_U.In1 min max init
my_first_code_U.In2 min max init

Computing code verification options

Starting code verification
2 Follow the progress of the verification in the MATLAB Command window,
and later using the Polyspace spooler (Queue Manager)) if you are

performing a server verification.

The software writes all status messages to a log file in the results folder, for
example:Polyspace R2011b_my first code 05 26 2011-17h26.10g:

<polyspace-c R2011b PID9284 PGID9284>

4-2

Running Verification with Polyspace® Model Link™ SL Software

Polyspace verification of my_first_code project.
Starting at 05/26/2011, 17h26.

Options used with Verifier:
-polyspace-version=CC-8.2.0.1 (R2011b)

-author=johnr

-from=scratch

-date=26/05/2011
-enum-type-definition=defined-by-standard

-lang=C

-allow-negative-operand-in-shift=true

-max-processes=4

-discard-asm=true
-variables-written-in-loop=custom=my_first_code_U
-results-dir=C:\PolySpace_Results\results_my_first_code
-target=1386
-scalar-overflows-behavior=truncate-on-error
-data-range-specifications=C:\Work\work5\my_first_code_polyspace_drs.txt
-functions-called-before-loop=[my_first_code_initialize]
-verif-version=1.0

-main-generator=true

-0=-02

-variables-written-before-loop=none

-prog=my_first_code

-scalar-overflows-checks=signed

-D1=__restrict__=

-D2=example=include_head

-D3=main=main_rtwec

-D4=MODEL=my_first_code

-D5=NUMST=1

4-3

4 Run Code Verification

Running Verification with Polyspace Model Link TL
Software

To start the Polyspace verification:

1 In the Simulink model window select Tools > Polyspace > Polyspace
for TargetLink.

The Polyspace Analyzer dialog box opens.

Polyspace.&nalyzer EI = @

— Analysis Parameters

Subsystem my_first_code _ert_rtwemy_first_code | Browse | |Fr0m Selection|
Results folder |CPolySpace_Resutsiresults_my_first_code BErowwse
— &dvanced
Enable addtional file list Select Files Project configuration Canfigure
Sendto Polyspace Server

— Data Range Management for Model

Inputs Cortesxtusl -
Turiabile parameters Specific caliakstion -
Outpts Mone =
hoclel Reference
’7 Model reference verification depth Currert modsl only - Model by model verification

Start | | Cancel

Polyspace Analyzer Dialog Box

4-4

Running Verification with Polyspace® Model Link™ TL Software

Note The subsystem field is automatically populated with the name of
the current subsystem, and the results directory is automatically set to
results_subsystem name. If more than one subsystem is present in the
model, a subsystem selection dialog opens.

2 Click Start to start the verification.

The verification starts, and messages appear in the MATLAB Command
window:

Polyspace Model-Link for Embedded Coder

Version MBD-5.7.0.6 (R2011a)

Preparing code verification

Creating results folder

Analysing subsystem: my_first_code

Locating generated source files:
H:\Documents\MATLAB\my_first_code_ert_rtw\ert_main.c ok
H:\Documents\MATLAB\my_first_code_ert_rtw\my_first_code.c ok

Generating DRS table
my_first_code_U.In1 min max init
my_first_code_U.In2 min max init

Computing code verification options

###.ééarting code verification
The exact messages depend on the code generator you use. However, the
messages always have the same format:
e Name of code generator
¢ Version number of the plug-in
¢ List of source files

¢ DRS (Data Range Specification) information.

3 You can follow the progress of the verification in the MATLAB Command
window, and later using the Polyspace spooler (Queue Manager)) if you
are performing a server verification.

4-5

4 Run Code Verification

Note Verification of a 3,000 block model will take approximately one hour to
verify, or about 15 minutes for each 2,000 lines of generated code.

Monitoring Verification Progress

Monitoring Verification Progress

In this section...

“Client Verifications” on page 4-7

“Server Verifications” on page 4-7

Client Verifications

For client verifications, you can follow the progress of the verification in the
MATLAB Command window. The software also saves all status messages to a
log file in the results folder. For example:

Polyspace_R2011b_my_first_code_05_26 2011-17h26.1log

Server Verifications

For server verifications, you can follow the initial stages of the verification in
the MATLAB Command window. Once the compilation phase is complete,
you can follow the progress of the verification using the Polyspace Queue
Manager (Spooler).

To open the Polyspace Queue Manager:

1 From the Simulink model window, select Tools > Polyspace > Open
Spooler.

For more information, see “Managing Verification Jobs Using the Polyspace
Queue Manager” in the Polyspace Products for C/C++ User’s Guide.

4 Run Code Verification

MATLAB Functions For Polyspace Batch Runs

You can run the following commands in the Command Window.

Command

Description

PolyspaceForEmbeddedCoder

Start Polyspace verification of code generated by Embedded
Coder software

PolyspaceForTargetLink

Start Polyspace verification of code generated by
TargetLink

PolyspaceSpooler Inspect the queue of the remotely sent verification over the
server
PolyspaceViewer Open Polyspace verification environment Run-Time Checks

perspective

PolyspaceSetTemplateCFGFile

Select a template file, for example, during a batch run

PolyspaceGetTemplateCFGFile

Get the currently selected template file (empty by default)

PolyspaceReconfigure

In case of a Polyspace release update without enabling the
MATLAB plug-in

PolyspaceAnnotation

Annotate block in Simulink model, which then appears in
Polyspace results. You can annotate either run-time checks
or coding rule violations, and provide a classification,
status, and comment for each annotation.

ver

Displays the Polyspace For Model-Link Version number
along with other MathWorks product information

Example with Embedded Coder

Suppose you open a Simulink model with the name example.mdl and
generate code. To start a verification, in the MATLAB Command window,
enter PolyspaceForEmbeddedCoder ('example').

Archive Files for Polyspace Verification

Archive Files for Polyspace Verification

In this section...

“Template File in MATLAB Installation folder\polyspace\” on page 4-9
“Files Used in Model Folder” on page 4-9
“Auto-Generated Files in Model Folder” on page 4-10

Template File in MATLAB Installation
folder\polyspace)\

When a verification is first performed, the software creates a copy of

the file cfg\templateEmbeddedCoder.cfg in the local model folder,
model_folder\model name-polyspace.cfg. The software does not create
a copy in subsequent verifications.

The file cfg\templateEmbeddedCoder.cfg contains the template Polyspace
configuration settings to support the TargetLink code generator. The
templateTargetLink.cfg file can be updated with site specific settings, to
facilitate verification of new models.

You can use the MATLAB command
PolyspaceSetTemplateCFGFile(config filename) to change the name and
location of the file that contains the template configuration. For example,
when you run Polyspace verification as part of an automated process, which
specifies the template configuration file, erases the local copy in the model
folder, and starts the verification.

Files Used in Model Folder

* model-name-polyspace.cfg — As mentioned
above this file is copied from the MATLAB
installation_folder\polyspace\cfg\templateEmbeddedCoder.cfg file
the first time a verification is run on a model. It is subsequently modified
by the Project Configuration block, or the Configure button in the option

4 Run Code Verification

4-10

in the Polyspace Analyzer dialog. It contains the Polyspace settings for
verifying the current model.

® polyspace _additional file list.txt — This file is created if the
Advanced option, Select Files is used in the Polyspace Analyzer dialog
box. This option allows files that are not part of the model to be analyzed
together with the model. For example these files could contain custom
lookup table code, custom stubs, device driver code etc. The Enable
additional file list option needs to be set together with configuring the
list of extra files to analyze.

Auto-Generated Files in Model Folder

These files are generated from the model for each verification when it is
started, and do not need archiving:

® model name_drs.txt — The DRS information extracted automatically
from the model.

® polyspace_include dir_list.txt — List of compilation include
directories extracted from the mode.

® polyspace file list.txt — List of file contained in the model to analyze

®* model name_last parameter.txt — The last set of parameters used in
the Polyspace Analyzer dialog box.

Review Verification Results

* “Viewing Results in Polyspace Verification Environment” on page 5-2

¢ “Identifying Errors in Simulink Models” on page 5-6

5 Review Verification Results

Viewing Results in Polyspace Verification Environment

When a verification completes, you can view the results using the Run-Time
Checks perspective of the Polyspace verification environment.

Note If you perform a server verification, you must download your results
from the server before you can view them. For more information, see
“Downloading Results from Server to Client” in the Polyspace Products for
C/C++ User’s Guide.

To view your results:

1 From the Simulink model window, select Tools > Polyspace > Open
results.

After a few seconds, the Run-Time Checks perspective of the Polyspace
verification environment opens.

5-2

Viewing Results in Polyspace Verification Environment

Check details

Review statistics

File Edit Run

Review Options Window Help

T EEEFIERIFET- ~ | 45 [Case sensitve[[] whole word ¥ | (5 Prosect mangger 2% Coding Rules [Run-Tme Cheds
BEHE |5 [Metowkgios
< Run-Time Checks an
K | % | o | o | 5 — o——
Pt tx] 2|~ example.c / Recursion_caller /line 157 / column 5 - zz:z;::nf:ﬂ]ﬂ:;;;.lsufy z’,:; g
L Dema_C (cov: 82%, unp: 1/48) 8 |8 |18 [259 Recurzion{ sx); // always encounters a division by zerc -lGray justified / to justfy o6 o
Eexample.c 4| 2| 2 |83 klassification Status Justified “|Orange justified / to justify 0/18 [i]
2 |10 = -] Software reliability indicator 259f297 87|
Non_Infinite_Loop () 1 Comment
Fointer_Arithmatic | } 101 19
RTE() 1 3 -2 Expanded Source Code | § Review Statistics
cursion 1 14
[EHRecursion_caller () 1 4 q
bl IRV.0 1
+F NIVL3 1 144 Calls o
e ! 28 if (Zdepth £ SO0 ¥ pst_stubs_O.random_int 152
t - ! . » ex;mp\eih(:ulsmni 157
e IRV.A 1 Recursion(depth): 5
y pst_stubs_0.random_int 162
E}-Square_Root() ! & y b example Recursian 184
o IRV.O 1 4 exsmple.RTE 228
e NIV 1 151 static woid Recursion_caller (void)
% sTD_LIEBS 1 152 { int x=randow int();
+ NIvL2 1 ii 0
=LA ' 155 if {po-d4] ss fx < =131
EB}-Square_Root_conv () 8 15e ¢ - T
EJ-Unreschable_Cods () o= 157 Becursion(&x); 4/ always encounters a diwision by 2H|
B-get_oil 1|2 158 3 Varisbles Detailed "
[-initialisations & 1 [|4 153
-main.c 20123 160 [initialisations.am pointer to
-single_file_analysis.c oo | a2 |]]tft % =102 F-initialisations.current_data w\nhh@
LI 2 |20 iz? 1f((randon_int() > 0} - initialisaticns first_psiload int 22
[EH-tass2.c 1|18 164 Recursion{ &x J: /¥ never encounters a division by at e e
: (- initialisations.tsb anay(0..9)
B_polyspace_stdstubs.c 185 ' [single_file_analysis.output_v1 int &
[l | 3 i:g } ‘ + | | Bsingle_file_analysis output_ve int 22
{-3- Run-Time Checfs J -2 Assistant Checks | < I 3 I v
b 0% .I Dema_C Source file: example.c examplejc Line: 157 Column: 5
Run-time checks Source code Variable access Call hierarchy

2 To navigate to the next error, type CTRL-N.

5-3

5 Review Verification Results

Run-Time Ch

T % |||y

Procedural entities ¥ 12| 7|+ %|Line
2 my_first_code o|of1|2z|os
---ert_rnain.c u] 1
I_—i_l---myr_first_code.c T4 |eaf 1
-_init_glabalz () a 1
[my_first_code_initialize () 2 |[1oof 42
B-my_first_code_step) Tz |87 24
: 1 1]
1 38
1 a8
~my_first_code_terminate () [N]
[#-=tdio.h u] 1
- polyspace_ stdstubs.c o (ool 1
&E-__polyspace_main.c 0 Mool 1
4 | i | b

3 Click any check to review additional information.

The Check Review pane shows information about the orange check, and the
Source pane shows the source code containing the orange check.

5-4

Viewing Results in Polyspace Verification Environment

INPUT

i

m_first_code.c | my_first_code_step | line 35 | column 45 -
uy_first code T.0utl = wy first code U.Inl ° wy first code T.InZ;
lassification Status Justified Comment
=l -8 | 3

[lhproven @ operation [#] on float may overflow (on MIN or MAY bounds of FLOATA4)
operator ¥ on type float 64

lefr: [-1.7977E "% . 1.7977ETH
right: [-1.7977E °°% ., 1.7977E °"%)
result: full-range [-1.7377E°°°°% .. 1.7977E"°"%] -
m| ert_main.c | 4B
26 /% Real-time model */ -
27 RT_MODEL_my first code my first code M ;
28 RT_MODEL_my first code *const my first code M = smy first code M !
z9
30 /% Model step function */
31 wvoid my first code_step(woid)
3z i E
33 A% Dutport: '<Root>/0utl' incorporates:
34 * Inport: '<£Root:/Inl'
35 * Inport: '<£Root:/InZ'
36 * Product: 'fRootx/Product'
37 *
38 wy first code ¥.0utl = wy first code U.Inl ¥ wy first code U.InZ;
39 1 -

For more information on reviewing run-time checks, see “Reviewing
Verification Results” in the Polyspace Products for C/C++ User’s Guide.

For information on specific checks, see “Colored Source Code for C” in the
Polyspace Products for C/C++ Reference.

5-5

5 Review Verification Results

Identifying Errors in Simulink Models

Polyspace Model Link products allow you to trace run-time checks in your
verification results directly to your Simulink model.

Consider the following example, where the Review Details pane shows
information about an orange check, and the Source pane shows the source
code containing the orange check.

&=t

5-6

my_first_code.c | my_Ffirst_code_step | line 38 § column 45

uy_first_code_Y.0utl = my first_code_U.Inl

uy_ first_code T.InZ;

Classification

Status

-

Justified Camment

»

=| @

m

operator ¥ on type float 64

left: [-1.7977E °"% .. 1.7977E

right: [-1.7977E °°% .. 1.7977E

result: full-range [-1.7977E

+208

+208

+208

1
1

. L.7977E

+208

1

my_first_code.c | ert_main.c 4 F B
26 /% Real-time model */ °
27 RT_MODEL_my first code my first code M ;

28 RT_MODEL_my first code *const my first code M = smy first code M !

29

30 /% Model step function */

31 wvoid my first code_step(woid) ¥
3z i £
33 A% Dutport: '<Root>/0utl' incorporates: =
34 * Inport: '<£Root:/Inl'

35 * Inport: '<£Root:/InZ'

36 * Product: 'fRootx/Product'

37 *

38 wy first code ¥.0utl = wy first code U.Inl ¥ wy first code U.InZ;

39 1 -

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. To fix this issue, you must return to
the model.

To trace this run-time check to the model:

Identifying Errors in Simulink Models

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane.

The Simulink model opens, highlighting the block with the error.

El iy first_code EI@
File Edit Wiew Simulation Format Tools Help
OeEES » |'|D.D |Normal ﬂ
In1 . n
E Qut1
In2

Product

Ready 100%% T=0.00 FixedStepDiscrete

2 Examine the model to find the cause of the check.

In this example, the highlighted block multiplies two full-range signals,
which could result in an overflow. This could be a flaw in either:

¢ Design — If the model should be robust against the full signal range, it
is a design bug. In this case, you must change the model to accommodate
the full signal range. For example, you could saturate the output of the
previous block, or bound the signal with a Switch block.

® Specifications — If the model is designed to work within specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The verification will then read these ranges from the model.
See “Specifying Signal Ranges” on page 2-9.

Applying either solution should address the issue and cause the orange
check to turn green.

5-7

	toc
	Getting Started with Model Link Products
	Product Overview
	Polyspace Model Link SL
	Polyspace Model Link TL

	Basic Workflow
	Tutorial: Verifying Code from a Simple Model
	Create Simulink Model and Generate Code
	Run Polyspace Verification
	View Results in Polyspace Verification Environment
	Trace Error to Simulink Model
	Specify Signal Ranges
	Verify Updated Model

	Configure Model for Code Verification
	Overview of Model Configuration for Code Generation and Verifica
	Configuring Simulink Model for Code Verification
	Recommended Model Settings for Code Verification
	Checking Simulink Model Settings
	Specifying Signal Ranges
	Specifying Signal Range through Source Block Parameters
	Specifying Signal Range through Base Workspace

	Annotating Blocks to Justify Known Checks or Coding-Rules Violat

	Configure Code Verification Options
	Overview of Polyspace Configuration
	Including Handwritten Code in Verification
	Configuring Data Range Settings
	Configuring Polyspace Analysis Options
	Configuring Polyspace Project Properties
	Creating a Polyspace Configuration File Template
	Specifying Header Files for Target Compiler
	Specifying Location of Results
	Main Generation for Model Verification
	Main for Generated Code
	Polyspace Model Link SL Considerations
	Overview
	Subsystems
	Default Options
	Data Range Specification
	Recommended Polyspace Analysis Options for Generated Code

	Polyspace Model Link TL Considerations
	Overview
	Subsystems
	Default Options
	Data Range Specification
	Lookup Tables
	Code Generation Options

	Run Code Verification
	Running Verification with Polyspace Model Link SL Software
	Running Verification with Polyspace Model Link TL Software
	Monitoring Verification Progress
	Client Verifications
	Server Verifications

	MATLAB Functions For Polyspace Batch Runs
	Example with Embedded Coder
	Archive Files for Polyspace Verification
	Template File in MATLAB Installation folder\polyspace\
	Files Used in Model Folder
	Auto-Generated Files in Model Folder

	Review Verification Results
	Viewing Results in Polyspace Verification Environment
	Identifying Errors in Simulink Models

